Saturday, 10 July 2021

Room with a Re-view: A series of reviews on nucleic acid nanotechnology

 The i-Motif as a molecular target: More than a complementary DNA secondary structure

The i-motif is a DNA structure formed by C tetrads intercalated with small loops regions. In vitro this structure is formed at low Ph, since it requires the protonation of the C’s. However, this structures appear inside the cell at physiological pH. The present review discuss the functions of i-motifs as transcription regulators inside the cell and its uses in synthetic biology and nanotechnology. Special focus is given to the application of i-motifs knowledge in cancer therapy, since this motif is abundant in tumor cells.

https://www.mdpi.com/1424-8247/14/2/96/htm

In Vitro selection of RNA aptamers binding to nanosized DNA for constructing artificial riboswitches

The authors present a method to rationally construct artificial riboswitches using nanosized DNA aptamers. This particular aptamer allowed them to regulate the internal ribosome entry site-mediated translation in respond to a ligand (nanosized DNA). They proved that the induction ratio is much higher than the same type of riboswitch but using a different aptamer. They propose to use nanosized nucleic acid to build bacterial riboswitches as an alternative for other regulators such as toehold switches or small transcription activating RNAs (STARs)

https://pubs.acs.org/doi/pdf/10.1021/acssynbio.0c00384

Behaviour of information flow near criticality

In this paper the mutual information between two spins in a two-dimensional Ising model are explored. An input spin is chosen, and its value is set by a random telegraph process with a given timescale. An output spin, a distance, d, away from the input is then monitored. Two measures of the mutual information between the input and output spins are then measured: the instantaneous mutual information of the steady state, and the rate of increase of mutual information. For a given timescale of the input spin, both the instantaneous information and information rate were found to express a maximum close to, but not at, the critical temperature. Furthermore, the information rate maximum was found to be non-monotonic as a function of the timescale of the input. These maxima were explained to be due to the balance between thermal noise, which increases with temperature, and the response time of the system, which decreases with temperature.

https://journals.aps.org/pre/pdf/10.1103/PhysRevE.103.L010102

Allosteric regulation of DNA circuits enables minimal and rapid biosensors of small molecules

This paper aimed to detect small molecule pollutants within environmental water samples, specifically two families of antibiotics. They employed the corresponding allosteric transcription factor to initially capture the ligand of interest e.g. TetR (tetracycline repressor). They exploited the competition between the allosteric transcription factor and an endonuclease to trigger a TMSD reaction and achieve signal amplification. In the presence of tetracycline, this can bind to TetR preventing binding of TetR to tetO (tet operator sequence) allowing the endonuclease to cleave and create a toehold. This can be accessed by a fluorescence reporter sequence. This is followed by cleavage cycles in order to get amplification of the signal. This system gives a broad linear range of detection. 

https://pubs.acs.org/doi/abs/10.1021/acssynbio.0c00545

No comments:

Post a Comment