Monday, 3 April 2017

Working with the City of London School on an exciting iGEM project

Today I meet with a group of school students (aged 16-18) from the City of London School, who will be working on a project for iGEM this year. iGEM is an international competition for school, undergrad and postgrad teams to design, model and build complex systems by engineering cells. Last year, Imperial won the overall prize, as discussed in this post by Ismael. 

Without giving too much away, the students will be working on a system based on a newly-developed molecular device, the toehold switch. Toehold switches are RNA molecules that contain the information required to produce proteins. This information is hidden via interactions within the RNA, which cause it to fold up into a shape that prevents the sequence from being accessed. If, however, a second strand of RNA with the right sequence is present, the structure can be opened up and protein production is possible.

This idea has been around for a reasonable while, but toehold switches are particularly useful, because they provide a better decoupling of the input, output and internal operation of the switch than previous designs. This is the principal of modularity that underlies the work of many of my colleagues here at Imperial, and allows for systematic engineering of molecular systems. This modularity is key to the proposed project.

I've been giving the students advice on how to model the operation of a toehold switch, in order that they can explore the design space before getting into the lab.


No comments:

Post a Comment